Journal of Organometallic Chemistry, 385 (1990) 255-275 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20456

Perfluormethyl-Element-Liganden

XXXIX *. Chrompentacarbonylkomplexe von Diels-Alder Addukten des Bis(trifluormethyl)disphosphens

Joseph Grobe *, Thomas Grosspietsch, Duc Le Van, Joachim Schulze, Bernt Krebs und Mechtild Dartmann

Anorganisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster, Wilhelm Klemm-Strasse 8, D-4400 Münster (B.R.D.)

(Eingegangen den 14. September 1989)

Abstract

The reactions of the Diels-Alder adducts 1-4 of bis(trifluoromethyl)diphosphene [adduct with 2,3-dimethylbutadiene (1), with isoprene (2), with cyclopentadiene (3), with 1,3-cyclohexadiene (4)] with the photochemically-produced complex $Cr(CO)_5THF$ to give in moderate yields (30-56%) the corresponding mononuclear complexes $Cr(CO)_5L$ (5-8; molar ratio of L and $Cr(CO)_5THF$: 1/2) and the binuclear compounds $[Cr(CO)_5]_2L$ (9-12; molar ratio of L and $Cr(CO)_5THF$: 1/3). 5-12 have been characterized by elemental analysis (C, H) and by mass, NMR and IR spectroscopy. The determination of the crystal and molecular structure of 12 confirms the *trans* arrangement of the trifluoromethyl groups on the PP bond as deduced from NMR data. The number of isomers observed for compounds 5-12 in addition to the X-ray diffraction study of 12 prove that the cycloadducts 1-4 contain the *trans* isomer of bis(trifluoromethyl)-diphosphene as building unit.

Zusammenfassung

Die Umsetzung der Diels-Alder-Addukte 1-4 des Bis(trifluormethyl)diphosphens [Addukt mit 2,3-Dimethylbutadien (1), mit Isopren (2), mit Cyclopentadien (3), mit Cyclohexadien (4)] mit dem photochemisch erzeugten Komplex $Cr(CO)_5$ THF führt in befriedigenden Ausbeuten (30-56%) zu den entsprechenden Einkernkomplexen $Cr(CO)_5L$ (5-8; Molverhältnis von Ligand und $Cr(CO)_5$ THF: 1/2) bzw. Zweikernverbindungen [$Cr(CO)_5$]₂L (9-12; Molverhältnis von Ligand und $Cr(CO)_5$ THF: 1/3). 5-12 werden durch analytische (C, H) und spektroskopische

^{*} XXXVIII. Mitteilung siehe Ref. 1.

Untersuchungen [IR, NMR (¹H, ¹⁹F, ³¹P, ¹³C), MS] charakterisiert. Die Ermittlung der Kristall- und Molekülstruktur von **12** bestätigt die aus NMR-Daten abgeleitete *trans*-Anordnung der Trifluormethylgruppen an der PP-Bindung. Die Zahl der beobachteten Isomeren von **5–12** beweist ebenso wie die Röntgenstrukturanalyse des Komplexes **12**, dass die Cycloaddukte **1–4** als Baustein die *trans*-Form des Bis(trifluormethyl)diphosphens enthalten.

Einleitung

Vor kurzem fanden wir einen einfachen Zugang zu Diels-Alder-Addukten des Bis(trifluormethyl)diphosphens $F_3CP=PCF_3$ [2]. Das Eintopf-Verfahren nutzt die Deiodierung des Phosphans F_3CPI_2 mit Zinn(II)-chlorid in Gegenwart von 1,3-Dienen (Gl. 1) und führt mit 2,3-Dimethylbutadien, Isopren, Cyclopentadien bzw. 1,3-Cyclohexadien in nahezu quantitativer Ausbeute zu den entsprechenden [2 + 4]-Cycloaddukten 1-4.

Damit ist ein neuer Typ von Trifluormethyldiphosphanen zugänglich geworden, die nach NMR-Untersuchungen [3] im Unterschied zu den verwandten acyclischen Verbindungen, z.B. Me(CF₃)PP(CF₃)Me [4], ausschliesslich als *trans*-Isomere vorliegen. Da die Produkte 1-4 als Öle anfallen und Einkristalle bisher nicht gewonnen werden konnten, wurde zur Absicherung der Molekülstruktur der bewährte Weg der Koordination an geeignete Komplexfragmente ML_x beschritten [1, 5, 6]. Dabei werden oft kristalline Derivate und Einkristalle ausreichender Qualität erhalten. Die Untersuchungen dienten gleichzeitig dem Ziel, die Ligandeneigenschaften der Diphosphane zu prüfen. Als Reaktionspartner wurde der photochemisch gut zugängliche Komplex Cr(CO)₅THF ausgewählt. Die vorliegende Arbeit fasst die erzielten Ergebnisse zusammen.

Darstellung der $Cr(CO)_5L$ - und $[Cr(CO)_5]_2L$ -Komplexe (L = 1-4)

Bei der Umsetzung der Diphosphaheterocyclen 1–4 mit frisch hergestellten Lösungen des $Cr(CO)_5$ THF-Komplexes [7] wird unter Lichtschutz das Ende des Farbumschlags der Lösungen nach etwa 16 h beobachtet. Die Reaktion von L und $Cr(CO)_5$ THF im stöchiometrischen Verhältnis 1/2 liefert in befriedigender Ausbeute

$$F_3 CPI_2 + 1,3 Dien \xrightarrow{Sn Cl_2 THF} 1 - 4 (1)$$

Schema 1

(30-60%) ein Gemisch aus dem jeweiligen Einkernkomplex $Cr(CO)_5 L$ (Verbindungen 5-8) und kleinen Mengen des entsprechenden Zweikernsystems $[Cr(CO)_5]_2 L$ (Komplexe 9-12). Eine deutliche Erhöhung des Anteils an 9-12 erreicht man erst mit einem grossen Überschuss des Komplexpartners (Molverhältnis: 1/3). Die Trennung der Ein- und Zweikernverbindungen gelingt in allen Fällen problemlos unter Nutzung der grossen Unterschiede in der Flüchtigkeit und/oder im Kristallisationsvermögen.

Die neuen Komplexe 5-12 (Schema 1) werden analytisch (C, H) und spektroskopisch (MS, NMR, IR) charakterisiert; Strukturaussagen lassen sich vor allem aus NMR- und IR-Daten ableiten.

Die einkernigen Verbindungen fallen mit Ausnahme von 8 als viskose Flüssigkeiten, die Zweikernkomplexe dagegen als kristalline Feststoffe an. Es handelt sich um bei Raumtemperatur beständige Substanzen mit guter Löslichkeit in allen gängigen organischen Lösungsmitteln und geringer Lichtempfindlichkeit. Die Liganden 2-4 enthalten unterschiedliche Phosphor-Donorzentren; allerdings sind die Unterschiede so gering, dass bei der Koordination an $Cr(CO)_5$ jeweils zwei strukturisomere Einkernkomplexe a und b entstehen (Schema 1). Die Zuordnung der Strukturen zu den Komponenten a und b und die Bestimmung ihres prozentualen Anteils basieren auf NMR-Untersuchungen. Die Röntgenbeugungsanalyse des Komplexes 12 in der vorliegenden Arbeit beweist die *trans*-Struktur des Cycloaddukts 4.

Spektroskopische Untersuchungen

Die hier zusammengefassten spektroskopischen Informationen (IR, NMR, MS) dienen in erster Linie der Identifizierung der neuen Komplexe. Von besonderem Interesse sind die ¹⁹F-, ³¹P- und ¹³C-NMR-Daten, da sie die Bestimmung der Struktur der Isomeren in Lösung ermöglichen. Darüberhinaus geben die durch Vergleich der Daten von freien und koordinierten Liganden ermittelten Koordinationseffekte Auskunft über die Bindungsverhältnisse in den Komplexen 5-12 und liefern damit einen Beitrag zur Frage der Ligandeneigenschaften von Perfluormethyl-Element-Verbindungen [8].

IR-Spektren im CO-Valenzbereich

Die IR-Spektren der Komplexe 5-12 im Bereich von 2200 bis 1800 cm⁻¹ enthalten entsprechend der gruppentheoretischen Vorhersage drei IR-aktive Banden der Rassen A_1^1 , A_1^2 und E (Tab. 1). Wegen der unterschiedlichen räumlichen Umgebung der beiden Cr(CO)_s-Gruppen in den zweikernigen Verbindungen 10-12 wird in Einklang mit den zugehörigen ¹³C-NMR-Spektren eine Verdopplung der Bandenzahl beobachtet. Sie tritt besonders deutlich in der kurzwelligen A_1^2 -Bande in Erscheinung. Eine eindeutige Zuordnung ist wegen der Überlappung der übrigen Banden nicht möglich. In den IR-Spektren der einkernigen Systeme 6-8 ergibt sich für die Strukturisomeren a und b keine Bandenaufspaltung, die auf die unterschiedliche Qualität der beiden nichtäquivalenten Donoratome hinweisen würde. Generell führen jedoch Abweichungen der Cr(CO)5-Einheit von der idealen Car-Symmetrie zur Aufhebung der Entartung und damit zur Aufspaltung der E-Bande ($\Delta \nu \approx 10-17$ cm^{-1}). Als weitere Konsequenz der Symmetrieerniedrigung wird in allen IR-Spektren die B1-Bande mit geringer Intensität beobachtet. Ihre Lage stimmt mit den nach $\nu(B_1) = 1/3[\nu(A_1^2) + 2\nu(E)]$ [9] berechneten Werten gut überein. Die in Tab. 1 zusammengefassten CO-Valenzfrequenzen und die nach Cotton und Kraihanzel [10] ermittelten Kraftkonstanten sind trotz der unterschiedlichen Grösse und Form der Liganden 1–4 vergleichbar mit denen des Komplexes $Cr(CO)_{S}P(CF_{3})_{2}Me$ [11] sowie mit denen der Pentacarbonylchromverbindungen von Diels-Alder-Addukten des Perfluor-2-phosphapropens [1, 5].

NMR-Spektren

Die Protonenresonanzspektren der Verbindungen 5-12 unterscheiden sich von denen der freien Liganden im Signalmuster und/oder in den chemischen Verschie-

Tabelle 1

CO-Valenzfrequenzen ν (cm⁻¹)^{*a*} und Valenzkraftkonstanten *k* (10⁻² Nm) der Komplexe 5-12, Lösungsmittel: Cyclohexan

Verb.	$\nu(A_1^2)$	<i>v</i> (B ₁)	$\nu(A_1^1)$	$\overline{\nu(E)}$	$\nu(\mathbf{B}_1)_{\text{ber.}}^{b}$	<i>k</i> ₁	k 2	k _i
5	2072m	1999w	1966s	1959vs	1997	15.81	16.05	0.274
6a/6b	2068m	1997w	1959s	1953vs	1991	15.70	15.97	0.278
7a/7b	2068m	1998w	1962s	1955vs	1993	15.75	15.99	0.273
8a/8b	2068m	1997w	1961s	1953vs	1991	15.74	15.97	0.278
9	2083m	2003w	1964s	1956vs	1998	15.81	16.07	0.308
10	2077m	2003w	1964s	1956vs	1996	15.80	16.04	0.293
11	2078m	2003w	1969s	1964vs	2002	15.86	16.14	0.278
12	2076m	2000w	1961s	1956vs	1996	15.74	16.04	0.292

^a Intensitäten: m = mittel, s = stark, vs = sehr stark; $\overline{\nu(E)} = 1/2 [\nu(E') + \nu(E'')]$. ^b $\nu(B_1)$ berechnet nach: $\nu(B_1) = 1/3 [\nu(A_1^2) + 2 \overline{\nu(E)}]$.

¹ H-NMR-Daten	H-NMR-Daten der Komplexe 5-12 ^a					
5:	δ 2.86 (m, 4H, H ₂ C), 1.92 (s, 3H, H ₃ C), 1.88 (s, 3H, H ₃ C)					
6a/6b:	δ 5.73 (s, 1H, HC=), 2.71 (m, 4H, H ₂ C), 1.90 (s, 3H, H ₃ C)					
7a/7b:	δ 6.46 (m, 1H, HC=), 6.19 (m, 1H, HC=), 4.02 (m, 1H, HC),					
	3.89 (m, 1H, CH), 2.07 (m, 2H, H ₂ C)					
8a/8b:	δ 6.68 (m, 1H, HC=), 6.44 (m, 1H, HC=), 3.79 (m, 1H, HC),					
	3.49 (m, 1H, CH), 2.16-1.65 (m, 4H, H ₂ C)					
9:	δ 2.94 (s, 4H, H ₂ C), 1.85 (s, 6H, H ₃ C)					
10:	δ 5.57 (d, 1H, HC=), 2.96 (m, 4H, H ₂ C), 1.87 (s, 3H, H ₃ C)					
11:	δ 6.44 (s, 2H, HC=), 4.09 (m, 1H, HC), 3.91 (m, 1H, HC),					
	$2.49-2.34 (m, 2H, H_2C)$					
12:	δ 6.59 (m, 2H, HC=), 3.8 (m, 1H, HC), 3.54 (m, 1H, HC),					
	$2.26-1.7 (m, 4H, H_2C)$					

Tabelle 2 ¹H-NMR-Daten der Komplexe 5–12^{*a*}

^a Lösungsmittel: CDCl₃, δ in ppm, δ (H) rel. zu TMS.

bungen. Die Signale der CH₂ Gruppen in α -Stellung zum koordinierten Phosphoratom erfahren generell eine Koordinationsverschiebung um ca. 0.1 ppm zu tieferem Feld. Ausser im Fall von 8 erweist sich die Ermittlung der Kopplungsparameter J(PH) wegen der Überlagerung durch andere Spin-Spin-Wechselwirkungen [J(HH), J(HF), J(PPH)] und wegen der Breite der Signale als schwierig. Daher eignen sich die ¹H-NMR-Spektren ohne ergänzende aufwendige Experimente wie 2D-Messungen nicht zur Unterscheidung der Strukturisomeren a und b (Tab. 2).

Verb.	$\delta(CF_3(X))$	$\delta(CF_3(Y))$	$^{2}J(\mathbf{P}_{\mathbf{A}}\mathbf{F}_{\mathbf{X}})$	$^{2}J(\mathbf{P}_{B}\mathbf{F}_{Y})$	$^{3}J(P_{A}F_{Y})$	$^{3}J(P_{B}F_{X})$
5	-45.5	- 55.7	64.3	45.6	21.8	7.9
6a	-45.8	- 55.6	64.4	49.1	19.5	7.6
6b	- 45.9	- 55.7	65.6	46.2	23.3	7.2
7a	- 42.4	- 57.1	69.4	45.3	20.7	7.6
7b	- 44.3	- 49.3	63.5	49.5	15.6	8.5
8a	- 44.3	- 52.3	66,8	50.5	17.6	9.0
8b	- 44.9	- 51.0	68.2	43.4	28.0	6.7
9	- 50.4	- 50.4	- 52.6	- 52.6	- 4.0	-4.0
10	- 50.7	-51.0	- 52.8	- 53.1	- 3.2	- 3.0
11 ^b	-48.2	- 45.8	-	_	_	-
12	- 46.4	- 46.2	49.8	- 52.2	< -2	- 4.3

Tabelle 3 ¹⁹F-NMR-Daten der Komplexe 5–12^{*a*}

^a Bezeichung der Kerne:

Lösungsmittel; CDCl₃, δ in ppm, J in Hz, $\delta(F)$ rel. zu CCl₃F. ^b Eine vollständige Auswertung des ¹⁹F-NMR-Spektrums von 11 ist wegen der geringen Auflösung nicht möglich; Kopplungskonstante: $|^{2}J(PF) + {}^{3}J(PF)| = 56.8$ Hz (für CF₃(X)) und 59.0 Hz (für CF₃(Y)).

Dagegen lassen sich aus den ¹⁹F-NMR-Spektren in Kombination mit den ³¹Pund ¹³C-Daten häufig eindeutige Strukturinformationen ableiten. Die Koordination der Liganden 1–4 ist mit folgenden Effekten verbunden (Tab. 3 bis 5):

(a) Bei den Einkernkomplexen **5–8** unterscheiden sich die ¹⁹F-Signale der koordinierten und freien PCF₃-Gruppen um etwa 5–10 ppm. Diese Differenz resultiert wie bei anderen Trifluormethylphosphanen [8, 11] aus einer Hochfeldverschiebung der Fluorresonanzen der koordinierten PCF₃-Gruppe um 3–5 ppm und einer Tieffeldverschiebung gleichen Betrages der Signale der nichtkoordinierten Baugruppe.

(b) Lässt man die kleinen ${}^{4}J(FH)$ - und ${}^{5}J(FH)$ -Kopplungen ausser Betracht, so gehören die ${}^{19}F$ -NMR-Spektren der Komplexe 5–12 zu Spinsystemen der Typen $(AX_{3})_{2}$ oder ABX₃Y₃, für die literaturbekannte Simulationsverfahren [12, 13] die Auswertung ermöglichen (Tab. 3, Fig. 1).

Bei der Anwendung der Verfahren auf die ¹⁹F-NMR-Spektren resultieren für die Einkernverbindung 5 keine merklichen Abweichungen der Werte $\delta(F)$, ²*J*(PF) und

Fig. 1a. ¹⁹F-NMR-Spektrum von 5; oben: gemessen, unten: simuliert.

Fig. 1b. ¹⁹F-NMR-Spektren von 7a (i), 7b (j) [oben] und 8a (i), 8b (j) [unten].

³J(PF) von den Daten, die man bei einer Interpretation als System 1. Ordnung direkt aus dem Spektrum erhält. Dagegen ist bei 9 und 10 (Fig. 2 und 3) die korrekte Zuordnung der ¹⁹F-Signale nur durch Simulation möglich. Ein besonders komplizierter Fall liegt beim ¹⁹F-NMR-Spektrum des Zweikernkomplexes 11 vor, da die Fluorresonanzen im Gegensatz zu denen der analogen Verbindungen 9, 10 und 12 zu zwei schlecht aufgelösten Signalen des ABX₃Y₃-Spinsystems führen (Fig. 4). Das zugehörige ${}^{31}P{}^{1}H{}$ -NMR-Spektrum ist ebenfalls komplex und für die Auswertung kaum geeignet. Ursache für die Komplexität und mangelhafte Auflösung der Signale ist die geringe Differenz der chemischen Verschiebungen δ_A und δ_B der beiden nichtäquivalenten Phosphorkerne (geschätzt ca. 40 Hz). Dies wird durch das Ergebnis eines Doppelresonanzexperimentes (³¹P mit ¹⁹F-Breitband-Entkopplung) bestätigt, bei dem für das Verhältnis $J_{AB}/\nu_0(\delta_A - \delta_B)$ der Wert 5 resultiert. (c) In den ³¹P-NMR-Spektren werden wie bei anderen Trifluormethylphosphankomplexen des Typs Cr(CO)₅L [8] Koordinationsverschiebungen $\Delta\delta(P) = \delta(P)_{K}$ - $\delta(\mathbf{P})_{\mathrm{L}}$ von 70 bis 100 ppm beobachtet (Tab. 4). Die Signale der nichtkoordinierten PCF₃-Gruppen ändern sich dagegen nur wenig (4-12 ppm). Dieser Befund verdeutlicht die starke Abhängigkeit der ³¹P-NMR-Parameter der Trifluormethylphosphane von der Bindungssituation. Bei verwandten, nicht fluorhaltigen Verbindungen fällt der Koordinationseffekt deutlich geringer aus. So verursacht die Koordination des 1,2-Diphenyl-1,2,3,6-tetrahydro-1,2-diphosphinins mit zwei Cr(CO)₅-Fragmenten

Fig. 2a. ¹⁹F-NMR-Spektrum von 9; oben: gemessen, unten: simuliert.

Fig. 2b. ¹⁹F-NMR-Spektrum von 10; oben: gemessen, unten: simuliert.

Fig. 3. ³¹P{¹H}-NMR-Spektrum von 9; oben: gemessen, unten: simuliert.

Fig. 4. ¹⁹F-NRM-Spektrum von 11.

nur eine Tieffeldverschiebung $\Delta\delta(P)$ von 50 ppm [14, 15]. Bei den Perfluormethylphosphanen wirkt sich offensichtlich neben dem sterischen Anspruch (Kegelwinkel [16]) die erhöhte π -Akzeptorfähigkeit [17] auf die Koordinationsverschiebung aus.

()		1 ·				
Verb.	$\delta(P_A)$	$\Delta(\delta(\mathbf{P}))^{b}$	$\delta(P_B)$	$\Delta(\delta(\mathbf{P}))^{b}$	$^{1}J(P_{A}P_{B})$	
5	-7.4	11.3	64.3	83.0	231.4	
6a	-16.2	4.0	58.8	79.0	238.7	
6b	- 9.5	10.7	58.7	78.9	240.5	
7a	- 3.4	4.9	62.9	71.2	215.0	
7Ъ	- 3.7	4,6	62.9	71.2	211.7	
8 a	-6.0	12.3	60.6	78.9	236.7	
8b	1.0	19.3	74.7	93.0	250.7	
9	58.9	77.6	58.9	7 7.6	-212.1	
10	45.2	65.4	52.3	72.5	-216.6	
11 °	84.3	100.7	84.3	100.7	-	
12	74.9	93.2	83.0	101.3	-212.4	

Tabelle 4 ³¹P{ 1 H}-NMR-Daten der Komplexe 5–12 ^{*a*}

^a Lösungsmittel: CDCl₃, δ in ppm, J in Hz, δ (P) relativ zu 85% H₃PO₄ Bezeichung der Kerne:

Zugehörige ²*J*(PF)- und ³*J*(PF)-Kopplungskonstanten: Siehe Tab. 2. ^b $\Delta(\delta P) = \delta(P)_{Komplex} - \delta(P)_{Ligand}$; $\delta(P)_{Ligand} = \frac{1}{2} [\delta(P_A)_{Ligand} + \delta(P_B)_{Ligand}]; \delta(P)$ -Daten der Liganden [3]. ^c $\delta(P)$ von **11** wurde aus dem ³¹P{¹⁹F}-NMR-Spektrum ermittelt (siehe Text). (d) Die NMR-Spektren der Einkernkomplexe 6-8 zeigen die Bildung von jeweils zwei Strukturisomeren a und b an. Das Isomerenverhältnis hängt von der Zugänglichkeit der beiden unterschiedlichen Donorzentren der Liganden 2-4 ab.

Im Fall des Isoprenderivates 6 (Verhältnis 6a/6b = 42/58) unterscheiden sich die Isomeren in der Position des Methylsubstituenten. Die Strukturzuordnung auf der Grundlage der NMR-Spektren bereitet Schwierigkeiten, da sowohl die Protonensignale, als auch die mit ¹⁹F-Breitbandentkopplung registrierten ³¹P-Resonanzen nur mangelhaft aufgelöst sind. Eine plausible Interpretation stützt sich auf die Annahme, dass die ²J(PC)-Kopplung des unsubstituierten sp^2 -C-Atoms mit dem nichtkoordinierten ³¹P-Kern grösser ist als mit dem an Chrom gebundenen [18]. Für **6a** und **6b** ergeben sich unter dieser Voraussetzung die nachfolgenden Strukturformeln:

Diese Interpretation ist mit einer gewissen Unsicherheit behaftet, da bisher keine Vergleichsdaten vorliegen und das Isomerenverhältnis (42/58) die Zuordnung der ¹³C-Signale erschwert.

Wesentlich einfacher gestaltet sich die Ableitung der Strukturen im Fall der Isomeren 7a und 7b bzw. 8a und 8b. Als Sonde dient hier die ¹³C-Resonanz der Methylenbrücken, deren ²J(PC)-Kopplung bei *syn*-Anordnung zum freien Elektronenpaar am Phosphor wesentlich grösser ist als bei *anti*-Stellung [18, 19]. Durch Integration ergibt sich auf Grund dieser Zuordnung für 7a/7b das Verhältnis 55/45, für 8a/8b das Verhältnis 35/65.

Die aus den ¹³C-NMR-Spektren erhaltenen Strukturinformation erleichtern auch die Zuordnung der entsprechenden Fluor- und Phosphorresonanzspektren der Komplexreihe. Dabei fällt auf, dass die $\delta(P)$ -Werte der sterisch günstigen *exo*-Iso-

Fig. 5. ³¹P{¹H}-NMR-Spektren von 7a (i), 7b (j) [oben] und 8a (i), 8b (j) [unten].

meren 7a bzw. 8a bei höherem Feld liegen als die der *endo*-Verbindungen 7b bzw. 8b. Überraschend kleine Unterschiede ergeben sich in den $\delta(P_A)$ - und $\delta(P_B)$ -Daten von 7a und 7b, überraschend grosse für die entsprechenden Parameter von 8a und 8b (Tab. 4, Fig. 5).

(e) Über die Strukturzuordnung hinaus liefern die ¹³C-NMR-Untersuchungen (Tab. 5) der Komplexe 5–12 noch folgende Informationen:

– Die δ (C)-Werte der *trans* bzw. *cis*-CO-Liganden liegen unabhängig vom Diphosphan jeweils in einem sehr engen Bereich von 218–219 bzw. 213–214 ppm. Die zugehörigen ²J(PC)-Kopplungskonstanten stimmen mit Literaturdaten von Cr-(CO)₅PR₃-Komplexen gut überein [20, 21].

- Ermittelt man nach Bodner et al. [22] die $\delta({}^{13}C)$ -Verschiebungen, die such unter dem Einfluss von L gegenüber den ${}^{13}C$ -Resonanzen von $Cr(CO)_6$ ergeben, so werden für die *cis*-CO-Gruppen der Komplexe 5–12 Werte zwischen 2.15 und 2.93, für die *trans*-CO-Liganden Werte zwischen 6.64 und 7.94 ppm erhalten. Die Donor/Akzeptoreigenschaften der Liganden 1–4 entsprechen somit in etwa denen des P(OPh)₃. Die Unterschiede innerhalb der Serie sind wahrscheinlich sterisch bedingt.

Massenspektren

Die Massenspektren der Komplexe 5-12 zeigen den Molekülpeak und die für Metallcarbonylderivate charakteristische Fragmentierung durch stufenweise Abspaltung der CO-Liganden. Als Basispeak tritt ausser bei 7 generell das Fragment CrL^+ (L = 1-4) auf. In allen Fällen wird mit hoher relativer Häufigkeit das Ion des zugrundeliegenden 1,3-Diens beobachtet, ein Befund, der für eine relativ leichte Retrodienspaltung der Liganden spricht. Tabelle 6 gibt die M^+ -Daten und die wichtigsten Fragmentionen sowie die zugehörigen Intensitäten wieder.

266

Tabelle 5 ¹³C{¹H}-NMR-Daten der Komplexe 5-12 "

5:	δ 219.1 (s, 1C, CO _{tran1}), 213.9 (d, 4C, CO _{cis}), ² J(PC) 11.1, 130.4 (ddq, 1C, CF ₃), ¹ J(FC) 319.9, ¹ J(PC) 34.7, ² J(PC) 7.1, 128.9 (d, 1C, -C(CH ₃)=), ² J(PC) 10.9, 128.9 (ddq, 1C, CF ₃), ¹ J(FC) 319.9, ¹ J(PC) 37.5 ² J(PC) 33.7, 125.0 (d, 1C, -C(CH ₃)=), ² J(PC) 5.7 32.8 (d, 1C, CH ₂), ¹ J(PC) 26.2, 25.94 (d, 1C, CH ₂), ¹ J(PC) 5.2, 20.8 (s, 1C, CH ₃), 20.3 (s, 1C, CH ₃)
ба:	δ 219.0 (s, 1C, CO _{trans}), 213.9, (d, 4C, CO _{cis}), ² J(PC) 11.4, 132.9 (dd, 1C, -C(CH ₃)=), ² J(PC) 6.1, ³ J(PC) 6.1, 130.4 (dq, 1C, CF ₃), ¹ J(FC) 322.8, ¹ J(PC) 34.5, 128.9 (dq, 1C, CF ₃), ¹ J(FC) 324.3, ¹ J(PC) 34.4, 119.6 (d, 1C, -CH=), ² J(PC) 9.8, 28.9 (d, 1C, CH ₂), ¹ J(PC) 6.2, 25.0 (d, 1C, CH ₃), ³ J(PC) 3.2, 18.4 (d, 1C, CH ₂), ¹ J(PC) 26.7
бb:	δ 219.0 (s, 1C, CO _{trans}), 213.9 (d, 4C, CO _{cis}), ² J(PC) 11.4, 137.5 (d, 1C, -C(CH ₃)=), ² J(PC) 12.6, 130.4 (dq, 1C, CF ₃), ¹ J(FC) 322.8, ¹ J(PC) 34.5, 128.9 (dq, 1C, CF ₃), ¹ J(FC) 324.3, ¹ J(PC) 34.4, 116.7 (dd, 1C, -CH=), ² J(PC) 7.1, ³ J(PC) 2.9, 25.7 (d, 1C, CH ₂), ¹ J(PC) 5.5, 24.5 (s, 1C, CH ₃), 23.3 (d, 1C, CH ₂), ¹ J(PC) 27.1
7a:	δ 219.1 (d, 1C, CO _{<i>trans</i>}), ² J(PC) 3.1, 214.1 (d, 4C, CO _{cis}), ² J(PC) 12.4 135.8, (dd, 1C, -CH=), ² J(PC) 12.2, ³ J(PC) 6.3, 133.7 (d, 1C, -CH=), ² J(PC) 6.3, 130.0 (q, 1C, CF ₃), ¹ J(FC) 320.0, 128.1 (q, 1C, CF ₃), ¹ J(FC) 321.3, 50.7 (s, 1C, CH), 47.1, (d, 1C, CH) ¹ J(PC) 28.9, 43.0 (d, 1C, CH ₂), ² J(PC) 12.4
7b:	δ 219.2 (s, 1C, CO _{trans}), 214.0 (d, 4C, CO _{cis}), ² J(PC) 13.2, 139.4 (d, 1C, -CH=), ² J(PC) 15.1, 130.0 (q, 1C, CF ₃), ¹ J(FC) 320.0, 129.6 (d, 1C, CH=), ² J(PC) 3.7, 128.1 (q, 1C, CF ₃) ¹ J(FC) 321.3, 49.0 (s, 1C, CH), 45.8 (d, 1C, CH), ¹ J(PC) 19.7, 42.9 (d, 1C, CH ₂), ² J(PC) 32.6
8a:	δ 219.2 (d, 1C, CO _{1rans}), ² J(PC) 4.8 214.2 (d, 4C, CO _{cis}), ² J(PC) 10.9, 134.6 (d, 1C, -CH=), ² J(PC) 11.5, 130.8 (d, 1C, -CH=), ² J(PC) 4.0, 129.7 (dq, 1C, CF ₃), ¹ J(FC) 319.6, ¹ J(PC) 42.8, 127.9 (dq, 1C, CF ₃), ¹ J(FC) 322.5, ¹ J(PC) 18.7, 32.0 (d, 1C, CH), ¹ J(PC) 3.0, 29.3 (d, 1C, CH), ¹ J(PC) 28.7, 22.4 (d, 1C, CH ₂), ² J(PC) 7.8, 20.7 (d, 1C, CH ₂), ² J(PC) 6.9
8b:	δ 219.2 (d, 1C, CO _{<i>trans</i>}), ² J(PC) 3.2 214.1 (d, 4C, CO _{<i>cis</i>}), ² J(PC) 11.3, 137.7 (d, 1C, -CH=), ³ J(PC) 5.3, 129.7 (dq, 1C, CF ₃), ¹ J(FC) 319.6, ¹ J(PC) 42.8, 127.8 (dq, 1C, CF ₃), ¹ J(FC) 322.5, ¹ J(PC) 18.7, 126.8 (s, 1C, CH=), 35.8 (s, 1C, CH), 27.8 (d, 1C, CH), ¹ J(PC) 24.1, 23.2 (d, 1C, CH ₂), ² J(PC) 7.5, 22.2 (d, 1C, CH ₂), ² J(PC) 6.7
9:	δ 218.1 (m, 2C, CO _{trans}), 213.5 (m, 8C, CO _{cis}), 128.4 (dq, 2C, CF ₃), ¹ J(FC) 321.9, ¹ J(PC) 24.7, 123.5 (s, 1C, -C(CH ₃)=), 34.0 (s, 2C, CH ₂), 22.1, (s, 2C, CH ₃)

10:	δ 217.9 (s, 2C, CO _{trans}), 213.4 (d, 8C, CO _{cis}), ² J(PC) 11.1,	
	129.1 (dd, 1C, -C(CH ₃)=), ${}^{2}J(PC)$ 7.4, ${}^{3}J(PC)$ 7.4,	
	115.9 (dd, 1C, -CH=), ${}^{2}J(PC 7.5, {}^{3}J(PC) 7.5,$	
	128.8 (dq, 2C, CF ₃), 128.4, ¹ J(FC) 322.0, ¹ J(PC) 12.6,	
	30.1 (d, 1C, CH ₂), ${}^{1}J(PC)$ 6.4, 24.7 (d, 1C, CH ₂), ${}^{1}J(PC)$ 6.0,	
	27.1 (d, 1C, CH ₃), ³ J(PC) 6.8	
11:	δ 218.6 (s, 1C, CO _{trans}), 218.5 (s, 1C, CO _{trans}),	
	213.7 (d, 4C, CO _{cis}), ² J(PC) 11.0, 213.5 (d, 4C, CO _{cis}),	
	² J(PC) 10.5, 138.2 (s, 1C, -CH=), 132.8 (s, 1C, -CH=),	
	127.8 (q, 2C, CF ₃), ¹ J(FC) 340.0, 50.7, (s, 1C, CH),	
	50.2 (s, 1C, CH), 44.0 (d, 1C, CH ₂), ² J(PC) 11.7	
12:	δ 218.6 (s, 2C, CO _{trans}), 213.8 (m, 8C, CO _{cis}),	
	137.7 (s, 1C, -CH=), 129.7 (s, 1C, CH=), 38.1 (s, 1C, CH),	
	34.4 (s, 1C, CH), 24.2 (s, 1C, CH ₂), 19.4 (s, 1C, CH ₂)	

^a Lösungsmittel: CDCl₃, δ in ppm, J in Hz, δ (C) rel. zu TMS.

Molekül- und Kristallstruktur des 2,3-Bis(trifluormethyl)-2,3-diphosphabicyclo[2.2.2]oct-5-en-2,3-bis(pentacarbonylchrom) (12)

Aus den NMR-Spektren (¹⁹F, ³¹P, ¹³C) der [2 + 4]-Cycloaddukte des Bis(trifluormethyl)diphosphens mit 1,3-Dienen (Liganden 1–4) ergibt sich die *trans*-Anordnung der CF₃-Gruppen. Sie entstehen also wahrscheinlich nach einem konzertierten Mechanismus aus dem *trans*-Isomeren des Diphosphens. Zur Absicherung der Strukturaussagen dient eine Röntgenbeugungsuntersuchung an Einkristallen des Komplexes 12 bei 140 K.

12 kristallisiert in der monoklinen zentrosymmetrischen Raumgruppe $P2_1/n$ mit den Gitterparametern a 12.205(3), b 16.000(4), c 12.289(3) Å, β 94.34(2)°. Die Elementarzelle enthält vier Formeleinheiten des Komplexes (Fig. 6); die Bindungspartner der P-Atome des cyclischen Liganden nehmen alternierend *endo*- bzw. *exo*-Positionen ein. In 12 liegt also die aus NMR-Daten abgeleitete *trans*-Struktur

Fragment	5	6a/6b	7a/7b	8a/8b	9	10	11	12
$\overline{M^+}$	13.9	22.6	18.1	24.5	5.6	34.7	12.7	8.5
<i>M</i> ⁺ – CO	2.8	2.1	1.4	2.5	0.2	0.5	_	0.3
$M^+ - 2CO$	1.0	1.9	1.9	1.5	0.2	-	_	_
<i>M</i> ⁺ - 3CO	11.8	27.2	15.4	14.3	_	0.7	1.0	1.5
$M^+ - 4CO$	26.1	49.0	25.2	33.6	4.4	22.5	6.4	8.5
$M^{+} - 5CO$	100.0	100.0	81.0	100.0	12.1	45.0	3.8	8.8
M^+ – 6CO	_	_	-		0.5	1.5	_	0.6
M ⁺ - 7CO	-	_	_		4.7	6.7	-	1.2
M ⁺ - 8CO	-	-	-	-	0.4	1.5	1.4	1.7
M ⁺ - 9CO	-	_	-	~	20.5	24.5	22.4	15.7
M ⁺ - 10CO	_	_	-	-	21.9	46.0	9.1	9.6
LCr ⁺	100.0	100.0	81.0	100.0	100.0	100.0	100.0	100.0
L+	55.4	60.0	12.1	8.2	35.9	16.1	2.4	7.0
1,3-Dien ⁺	87.1	74.3	100.0	63.9	28.8	31.0	58.2	41.1

Massenspektren der Komplexe 5-12, rel. Intensitäten in %

Tabelle 6

Fig. 6. Stereobildpaar der Elementarzelle von 12.

des Liganden 4 vor (Fig. 7). Tab. 7 fasst eine Auswahl von Abstands- und Winkelangaben zusammen.

Die sterischen Gegebenheiten des Bicyclus wirken sich auf die beiden $Cr(CO)_{5}$ -Gruppen unterschiedlich aus. Dies zeigt sich besonders deutlich in den CrP-Bindungsabständen Cr(2)P(2) 2.363(2) Å für den *endo*- und Cr(1)P(1) 2.392(2) Å für den *exo*-ständigen Partner. Diese Werte sind um 0.22 bzw. 0.19 Å kleiner als die Summe der Einfachbindungsradien (2.58 Å) von Cr und P; sie liegen im Mittelfeld der Daten, die bisher für Komplexe des Typs $(CO)_5 CrPR_3$ beobachtet wurden (2.25–2.48 Å [23–26]). Die sterische Wechselwirkung zwischen Ligand 4 und den Komplexfragmenten führt ausserdem zu erheblichen Abweichungen von der C_{4r} -Symmetrie der beiden $Cr(CO)_5$ -Gruppen. Mit Ausnahme von C(4)O(4) und C(9)O(9)werden alle *cis*-ständigen CO-Liganden von L abgestossen, so dass die Winkel

Fig. 7. Molekülstruktur von 12.

Cr(1) - P(1)	2.392(2)	O(1)-C(1)	1.140(5)	
Cr(1) - C(2)	1.924(4)	O(2)-C(2)	1.118(5)	
Cr(1) - C(4)	1.885(4)	O(3)-C(3)	1.143(6)	
Cr(1)-C(5)	1.899(4)	O(4)-C(4)	1.142(5)	
Cr(1) - C(1)	1.886(4)	O(5)-C(5)	1.138(5)	
Cr(1) - C(3)	1.851(5)	O(6)-C(6)	1.130(5)	
Cr(2) - P(2)	2.363(2)	O(7)-C(7)	1.139(6)	
Cr(2) - C(8)	1.901(4)	O(8)-C(8)	1.128(5)	
Cr(2) - C(9)	1.911(4)	O(9)-C(9)	1.138(5)	
Cr(2) - C(7)	1.863(4)	O(10)-C(10)	1.133(5)	
Cr(2) - C(6)	1.910(4)			
Cr(2) - C(10)	1.912(4)	C(11)-C(14)	1.499(6)	
		C(11)-C(15)	1.528(6)	
P(1) - C(11)	1.871(4)	C(12)-C(13)	1.492(6)	
P(1) - C(17)	1.891(4)	C(12)-C(16)	1.532(7)	
P(2) - P(1)	2.268(1)	C(13)-C(14)	1.343(6)	
P(2) - C(12)	1.872(4)	C(16)-C(15)	1.514(6)	
P(2) - C(18)	1.895(4)			
F(1) - C(17)	1.329(5)			
F(2) - C(18)	1.342(5)			
F(3) - C(17)	1.338(4)			
F(4) - C(18)	1.338(4)			
F(5)-C(18)	1.323(5)			
F(6)-C(17)	1.325(5)			
P(1) - Cr(1) - C(2)	93.5(1)	Cr(2) - P(2) - P(1)	128.5(1)	
P(1) - Cr(1) - C(4)	86.7(1)	Cr(2) - P(2) - C(12)	117.4(1)	
C(2) - Cr(1) - C(4)	175.7(2)	P(1) - P(2) - C(12)	96.8(1)	
P(1)-Cr(1)-C(5)	96.7(1)	Cr(2) - P(2) - C(18)	109.8(1)	
C(2)-Cr(1)-C(5)	93.0(2)	P(1) - P(2) - C(18)	99.4(1)	
C(4) - Cr(1) - C(5)	91.3(2)	C(12) - P(2) - C(18)	100.6(2)	
P(1)-Cr(1)-C(1)	94.3(1)			
C(2)-Cr(1)-C(1)	87.5(2)	Cr(1)-P(1)-P(2)	128.8(1)	
C(4)-Cr(1)-C(1)	88.1(2)	Cr(1) - P(1) - C(11)	118.8(1)	
C(5) - Cr(1) - C(1)	168.9(2)	P(2) - P(1) - C(11)	95.6(1)	
P(1) - Cr(1) - C(3)	176.6(1)	Cr(1) - P(1) - C(17)	107.8(1)	
C(2)-Cr(1)-C(3)	89.3(2)	P(2) - P(1) - C(17)	100.8(1)	
C(4) - Cr(1) - C(3)	90.3(2)	C(11) - P(1) - C(17)	100.6(2)	
C(5) - Cr(1) - C(3)	85.0(2)			
C(1)-Cr(1)-C(3)	83.9(2)	Cr(1)-C(1)-O(1)	173.1(4)	
		Cr(1)-C(2)-O(2)	175.1(4)	
P(2)-Cr(2)-C(8)	92.4(1)	Cr(1)-C(3)-O(3)	179.0(4)	
P(2) - Cr(2) - C(9)	87.8(1)	Cr(1)-C(4)-O(4)	177.4(4)	
C(8) - Cr(2) - C(9)	88.6(2)	Cr(1)-C(5)-O(5)	171.5(4)	
P(2)-Cr(2)-C(7)	176.2(1)	Cr(2)-C(6)-O(6)	177.7(4)	
C(8) - Cr(2) - C(7)	85.6(2)	Cr(2) - C(7) - O(7)	179.0(4)	
C(9) - Cr(2) - C(7)	88.9(2)	Cr(2) - C(8) - O(8)	174.5(4)	
P(2)-Cr(2)-C(6)	90.2(1)	Cr(2)-C(9)-O(9)	178.2(4)	
C(8) - Cr(2) - C(6)	89.1(2)	Cr(2)-C(10)-O(10)	172.2(4)	
C(9) - Cr(2) - C(6)	176.9(2)		. *	
C(7) - Cr(2) - C(6)	93.0(2)			
P(2) - Cr(2) - C(10)	97.9(1)			
C(8)-Cr(2)-C(10)	169.6(2)			
C(9) - Cr(2) - C(10)	91.0(2)			
C(7)-Cr(2)-C(10)	84.1(2)			
C(6)-Cr(2)-C(10)	91.6(2)			

Tabelle 7. Ausgewählte interatomare Abstände (Å) und Valenzwinkel (°) von 12.

C-Cr-C der *trans*-ständigen CO kleiner als 180° sind. Besonders starke Wechselwirkungen werden im Kristall zwischen den Trifluormethylsubstituenten und den Carbonylgruppen C(5)O(5) bzw. C(10)O(10) registriert; die Winkel P(1)Cr(1)C(5)

Tabelle 8

Vergleich der CO-Valenzfrequenzen, der Koordinationsverschiebung $\Delta(\delta(P))$ und der CrP-Abstände (Å) von Cr(CO)₅-Komplexen "

Verbindung	A_1^2	B ₁	A ¹	E	$\Delta(\delta(\mathbf{P}))$	d(CrP)	$\Delta d(CrP)$	Lit.
P-M P-1-CF3 (M)CF3	2076	2000	1961	1956	101.3	2.392(2) 2.363(2)	0.188 0.217	diese Arbeit
$ \begin{array}{c} $	2070 2059		1949	1932	50.7	2.391(2) 2.387(2)	0.189 0.193	[14]
() P P P P P P P P P	2062		1957		_	2.329(4) 2.313(4)	0.251 0.267	[14]
BuNH P-P Ph H	2060		194 1	1952		2.355(3) 2.384(3)	0.225 0.196	[14]
CF ₂ PM CF ₃	2070	1998	1968	1952	90.4	2.329(1) 2.322(1)	0.251 0.258	[1]
$ \begin{array}{c} $	2078	2005	1973	196 0	79.1	2.399(1)	0.181	[6]
$Ph_3PCr(CO)_5$ $Me_2PCF_3Cr(CO)_5$ $MeP(CF_3)_2Cr(CO)_5$	2065 2076 2081	1980	- 1969 1981	1940 1954 1969	61.3 83.4 96.0	2.422(1) 	0.158	[34] [11] [11]

^{*a*} $\Delta(\delta(P)) = \delta(P)_{\text{Komplex}} - \delta(P)_{\text{Ligand}}, \ \Delta d(CrP) = r(Cr) + r(P) - d(CrP), \ r(Cr) = 1.48 \text{ Å [35]}; \ r(P) = 1.10 \text{ Å [36]}.$

bzw. P(2)Cr(2)C(10) weichen um 6.7 bzw. 7.9° von 90°, die zugehörigen Winkel Cr(1)C(5)O(5) bzw. Cr(2)C(10)O(10) um 8.5 bzw. 7.8° von 180° ab. Auf sterische und elektronische Effekte dürften die Unterschiede in den CrC-Abständen der *trans*- [Cr(1)C(3) 1.851(5) bzw. Cr(2)C(7) 1.863(4) Å] und *cis*-CO Liganden [Mittelwert: Cr(1)C 1.899, Cr(2)C 1.909 Å] zurückgehen [27].

Der Zweikernkomplex 12 enthält mit P(1)P(2) 2.268 Å eine der längsten bisher beobachteten PP-Einfachbindungen. In typischen acyclischen Diphosphanen werden Abstände von 2.192 {P₂Me₄ [28]} oder 2.215 Å [P₂(C₆H₁₁)₄ [29]}, in Cyclophosphanen von 2.213 {(PCF₃)₄ [30]} oder 2.223 Å {(PCF₃)₅ 31]}, im Diphospheten F₃CPP(CF₃)C(SiMe₃)=C(SiMe₃) von 2.223 Å [32] und im Fall eines koordinierten Triphosphans im Platinkomplex Pt{F₃CPP(CF₃)P(CF₃)C(CF₃)=CCF₃}(PPh₃)₂ von 2.175 bzw. 2.191 Å registriert [32, 33]. Auch die von Huttner et al. [14] beschriebenen Bis(pentacarbonylchrom)-Komplexe acyclischer und cyclischer Diphosphane enthalten kürzere PP-Bindungen (2.161–2.255 Å). Ursache für den ungewöhnlichen grossen PP-Abstand in 12 dürfte die sterische Beanspruchung durch die sperrigen Substituenten Cr(CO)₅ und CF₃ sein.

Zur Abschätzung der Ligandeneigenschaften der Cycloaddukte 1–4 wird in Tab. 8 ein Vergleich der CO-Valenzfrequenzen, der Koordinationsverschiebungen $\Delta\delta(P)$ und der CrP-Abstände einer Serie von Cr(CO)₅L-Komplexen genutzt. Dabei fällt auf, dass die ν (CO)- und $\Delta\delta(P)$ -Daten der Komplexe 5–12 von denen acyclischer und cyclischer Fluoralkylphosphan-Analoga nur wenig abweichen, obwohl sich aus sterischen Gründen deutliche Unterschiede in den CrP-Abständen zeigen. Der Substituenteneinfluss von R_F- und Ph-Gruppen prägt sich trotz vergleichbarer CrP-Bindungslängen in den IR- und $\Delta\delta(P)$ -Werten aus. Die beobachteten Daten lassen sich auf der Grundlage des synergetischen ML-Bindungsmodells deuten, da sich die Vergrösserung des ML-Abstandes auf die σ -Donor-Wechselwirkung stärker auswirkt als auf die π -Rückbindung. Es überrascht nicht, dass die von Grim et al. [23] abgeleitete lineare Beziehung zwischen ν (CO) der E-Bande und d(CrP) für die sterisch stark beanspruchten Cr(CO)₅PR₃-Komplexe der Tab. 8 ihre Gültigkeit verliert.

Diskussion der Ergebnisse

Die bei der Untersuchung der Einkern- und Zweikernkomplexe 5-8 bzw. 9-12 gewonnenen Daten bestätigen Zusammensetzung und Konstitution der neuen Verbindungen. Sie füllen die bisher spärliche Zahl zwei [14] der Metallcarbonylderivate von Diphosphen-Cycloaddukten zu einer Serie von 10 Vertretern auf. Von den möglichen Donorzentren (C=C oder P) der Liganden 1-4 sind erwartungsgemäss stets die Phosphoratome an Chrom gebunden. Die NMR-Parameter der Komplexe 5-12 beweisen indirekt, dass bei der Koordination die trans-Anordnung der CF3-Gruppen in den Diphosphaheterocyclen erhalten bleibt. Für die Ableitung der Molekülstrukturen in Lösung sind insbesondere die ¹³C-NMR-Spektren wichtige Informationsquellen. Bei der Synthese der Einkernkomplexe 6-8 werden wegen der geringen Unterschiede in den Ligandeneigenschaften der beiden Phosphordonoren generell zwei strukturisomere Verbindungen a und b nebeneinander gebildet. Ihre Zuordnung gelingt durch Entkopplungsexperimente und INEPT-Messungen. Die durch Röntgenbeugung ermittelte Struktur des Komplexes 12 beweist die aus den NMR-Spektren abgeleitete trans-Anordnung der CF₃-Gruppen in den Liganden 1-4.

Hinsichtlich der Ligandeneigenschaften ergeben sich innerhalb der Reihe der Cycloaddukte 1-4 trotz Variation der Grösse und Form keine Unterschiede, die sich in deutlichen Änderungen der IR- und NMR-Daten auswirken würden. Sterische Effekte, wie sie insbesondere bei der Koordination zweier $Cr(CO)_5$ -Gruppen zu erwarten sind, spielen für die MP-Bindung offenbar nur eine untergeordnete Rolle. Diese Vermutung wird durch die Befunde der Strukturuntersuchung an 12 gestützt. Trotz erheblich längerer CrP-Bindungen als in anderen Trifluormethylphosphankomplexen sind die Unterschiede in $\nu(CO)$ und $\delta(P)$ gering, ein Befund, der nur auf den ersten Blick überrascht. Auf $\nu(CO)$ und $\delta(P)$ wirken sich nach dem synergetischen Bindungsmodell nämlich die Abnahme der σ -Donor- und die Zunahme der π -Akzeptor-Wechselwirkung gleichsinnig aus. Durch Abstandsänderungen wird aber die σ -Bindung stärker berührt als die π -Bindung, so dass der Gesamteffekt nur kleine Änderungen in der Elektronendichte am Zentralatom verursacht.

Experimentelles

Wegen der Hydrolyse- und Sauerstoffempfindlichtkeit sowie der möglichen Toxizität der Verbindungen werden sämtliche Operationen unter Stickstoff oder Argon mit Hilfe einer Hochvakuum-Apparatur durchgeführt. Die Lösungsmittel werden nach den üblichen Methoden getrocknet und mit Stickstoff oder Argon gesättigt. Als Reaktionsgefässe dienen Mehrarmampullen mit Zerschlagventilen. Bei grösseren Ansätzen verwendet man Schlenkkolben. Sämtlich Geräte werden vor der Nutzung unter Vakuum ausgeheizt.

IR-Spektren: Modell 683 der Firma Perkin-Elmer; Lösung in Cyclohexan (KBr-Zellen).

NMR-Spektren: ¹H und ¹⁹F mit WP80 CW- und WH90 FT-NMR-Spektrometern der Firma Bruker Analytische Messtechnik; TMS bzw. CCl₃F als interne Standard-Substanzen. ³¹P-Spektren unter ¹H-Breitband-Entkopplung; WH90-Spektrometer; P(OMe)₃ als externer Standard. ¹³C{¹H}-NMR: WM300 und AM360 der Firma Bruker. Zur Sicherung der Zuordnung der Signale dienen INEPT-Messung.

Massenspektren: CH5-Spektrometer der Firma MAT-Finnigan bei folgenden Aufnahmebedingungen: Elektronenenergie 20/70 eV; T(Ionenquelle) 200 °C; Ionenstrom 100/300 μ A; Beschleunigungsspannung 3000 V; SEV-Spannung 2.0 kV.

CH-Analysen: Modell 240 der Firma Perkin-Elmer. Die Darstellung der Liganden 1-4 erfolgt nach der von uns beschriebenen Methode [3]. Die hierzu benötigte Ausgangsverbindung F_3CPI_2 wird nach bewährten Verfahren [37] gewonnen.

Darstellung der Cr(CO)₅L- und [Cr(CO)₅]₂L-Komplexe 5–12

Die Darstellung dieser Komplexe erfolgt nach der Methode der "indirekten photochemischen Substitution" [7]. Zur Synthese der Einkernverbindungen 5–8 werden in die aus 10 mmol $Cr(CO)_6$ frisch bereitete $Cr(CO)_5$ THF-Lösung jeweils 4 mmol der Liganden (1–4) (Molverhältnis von $Cr(CO)_5$ THF und L etwa 2/1) einpipettiert. Nach Rühren über Nacht (ca. 16 h) ist der orange Farbton der Lösung nach gelb umgeschlagen. Das Lösungsmittel und nicht umgesetzter Ligand werden abkondensiert. Die Rohprodukte werden durch Sublimation bei Raumtemperatur von überschüssigem $Cr(CO)_6$ befreit. Das Isomerengemisch 8a/8b fällt als gelber Feststoff an und wird aus n-Pentan/Toluol (2/1) bei – 20°C umkristallisiert. Alle

Verb.	Summenformel	M(ber.)	Ausbeute $(\delta d. Th.)$	C,H-Ana (gef. (ber	lysen .) (%))	Bemerkungen
				c	н	
5	C ₁₃ H ₁₀ O ₅ F ₆ P ₂ Cr	474.15	30	32.90 (32.94)	2.13 (2.11)	hellgelbes Öl
6a/6b	$C_{12}H_8O_5F_6P_2Cr$	460.13	35	30.54 (31.33)	1.72 (1.75)	hellgelbes Öl
7a/7b	$C_{12}H_6O_5F_6P_2Cr$	458.11	37	31.20 (31.47)	1.30 (1.32)	oranges Öl
8a/8b	$C_{13}H_8O_5F_6P_2Cr$	472.14	56	33.06 (33.08)	1.67 (1.71)	gelbe Kristalle
9	$C_{18}H_{10}O_{10}F_6P_2Cr_2$	666.20	30	32.69 (32.46)	1.39 (1.51)	gelbe Kristalle
10	$C_{17}H_8O_{10}F_6P_2Cr_2$	652.17	40	31.09 (31.32)	1.09 (1.24)	gelbe Kristalle
11	$C_{17}H_6O_{10}F_6P_2Cr_2$	650.16	30	31.32 (31.41)	0.84 (0.93)	gelbe Kristalle
12	$C_{18}H_8O_{10}F_6P_2Cr_2$	664.19	30	32.99 (32.56)	1.29 1.21	gelbe Kristalle

Tabelle 9 Ausbeute und analytische Daten der Komplexe 5-12

Tabelle 10

Kristalldaten, Details zur Datensammlung und Strukturlösung

Formel	$C_{18}H_8F_6O_{10}P_2Cr_2$
Molekulargewicht	664.2
a (Å)	12.205(3)
b (Å)	16.000(4)
c (Å)	12.289(3)
β(°)	98.34(2)
<i>V</i> (Å ³)	2374.4
Raumgruppe	$P2_1/n$
Z	4
$d_{\rm x} ({\rm gcm^{-3}})$	1.86
Temperatur (K)	140
Messinstrument	Syntex P2 ₁ -Vierkreisdiffraktometer
Strahlung	Mo- K_{α} ($\lambda = 0.71069$ Å, Graphitmonochromator)
Messgeschwindigkeit, °/min	4–20
Messbereich	θ -2 θ -scan; 4° < 2 θ < 54°
Anzahl unabhängiger Reflexe	5224
Anzahl der Reflexe mit $I > 1.96\sigma(I)$	3750
Anzahl der Variablen	375
$R_1 = \sum (F_0 - F_c) / \sum F_0 $	0.0466
$R_{2} = [\Sigma w(F_{o} - F_{c})^{2} / \Sigma w F_{o} ^{2}]^{1/2}$	0.0503
Strukturlösung	Direkte Methoden (SHELXTL-System)
	Cr aus E-map, P, O, F, C und H-
	Atome aus Differenz-Fouriersynthesen
Verfeinerung	Kleinste Quadrate (volle Matrix)
	H-Atome isotrop (SHELXTL-System)
Wichtungsschema	$w = [\sigma(F_0)^2 + (0.015 F_0)^2]^{-1}$
	$\sigma(F_{\rm o}) = \sigma(I) / (2 \times F_{\rm o} \times Lp)$

übrigen Einkernkomplexe (5–7) sind hochsiedende Flüssigkeiten und werden durch Kurzweg-Destillation gereinigt $(30-35 \,^{\circ}C/10^{-2} \,^{\circ}Torr)$. Die Darstellung der Zweikernverbindungen 9–12 erfolgt unter Erhöhung des Cr(CO)₅THF-Anteils auf das Molverhältnis 3/1 in analoger Weise. Nach Rühren über Nacht werden Lösungsmittel, Cr(CO)₆ und Einkernkomplex durch Kondensation, Sublimation und Kurzwegdestillation abgetrennt. Der Rückstand wird in 20 ml Toluol aufgenommen, die überstehende Lösung abpipettiert und mit 20 ml n-Pentan versetzt. Nach ca. 48 h bei – 20 °C kristallisieren die Zweikernkomplexe aus dieser Lösung aus. In Tab. 9 werden die Ausbeuten und die analytischen Daten zusammengefasst.

Strukturbestimmung von 12

Für die Röntgenstrukturanalyse geeignete Kristalle des Komplexes wurden durch Umkristallisation aus n-Pentan erhalten. Die Untersuchung erfolgt auf einem Syntex-P2₁-Vierkreisdiffraktometer an einem auf 140 K gekühlten Kristall mit graphitmonochromatisierter Mo- K_{α} -Strahlung (λ 0.71069 Å). Wichtige Abstände und Winkel sind in Tab. 7 zusammengefasst. Tabelle 10 gibt die Kristalldaten sowie Details zur Datensammlung und Strukturlösung wieder. Weitere Einzelheiten zur Strukturanalyse können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54084, angefordert werden.

Dank

Wir danken dem Minister für Wissenschaft und Forschung Nordrhein-Westfalen und dem Fonds der Chemischen Industrie für die Förderung dieser Arbeit. Th. Grosspietsch dankt dem Fonds der Chemischen Industrie für ein Doktoranden-Stipendium.

Literatur

- 1 J. Grobe, D. Le Van, W. Meyring, B. Krebs und M. Dartmann, J. Organomet. Chem., 346 (1988) 361.
- 2 J. Grobe, D. Le Van und J. Schulze, Z. Naturforsch, B, 40 (1985) 1753.
- 3 J. Grobe, D. Le Van, G. Hägele und J. Schulze, in Vorbereitung; J. Schulze, Dissertation Univ. Münster 1987.
- 4 R.C. Dobbie und P.D. Gosling, J. Chem. Soc., Chem. Commun., (1975) 585.
- 5 J. Grobe, D. Le Van, W. Meyring, B. Krebs und M. Dartmann, J. Organomet. Chem., 340 (1988) 143.
- 6 J. Grobe, J. Szameitat und M. Möller, J. Organomet. Chem., 344 (1988) 61.
- 7 W. Strohmeier und F.J. Müller, Chem. Ber., 102 (1968) 3609.
- J. Grobe und D. Le Van, Z. Anorg. Allg. Chem., 518 (1984) 36; J. Grobe, M. Köhne-Wächter und D. Le Van, J. Organomet. Chem., 280 (1985) 331; J. Grobe, D. Le Van und J. Szameitat, ibid., 289 (1985) 341; J. Grobe, D. Le Van und W. Meyring, ibid., 307 (1986) 327.
- 9 C. Barbeau und J. Turcotte, Can J. Chem., 54 (1976) 1603.
- 10 F.A. Cotton und C.S. Kraihanzel, J. Am. Chem. Soc., 84 (1962) 4432.
- 11 J. Apel, R. Bacher, J. Grobe und D. Le Van, Z. Anorg. Allg. Chem., 453 (1979) 39.
- 12 F.A.L. Anet, J. Am. Chem. Soc., 84 (1962) 747.
- 13 PANIC-Programm, Fa. Bruker, Version 840619.
- 14 J. Borm, G. Huttner, O. Orama und L. Zsolnai, J. Organomet. Chem., 282 (1985) 53.
- 15 Zum Vergleich mit [14]: δ(P)-Daten des 1,2-Diphenyl-1,2,3,6-tetrahydro-1,2-diphosphinins: J. Grobe,
 D. Le Van und S. Martin, Z. Anorg. Allg. Chem., (1989) im Druck; A. Meriem, J.P. Majoral, M. Revel und J. Navech, Tetrahedron Lett., 24 (1983) 1975.
- 16 C.A. Tolman, Chem. Rev., 77 (1977) 313.

- 17 J. Grobe und D. Le Van, Report on the First Soviet-German Symposium on Fluorine Chemistry, Königstein, Oct. 8/9. 1986.
- 18 Vgl. beispielsweise: J.J. Breen, S.I. Featherman, L.D. Quin und R.C. Stocks, J. Chem. Soc., Chem. Commun., (1972) 657.
- 19 Y.Y.C. Yeung Lam Ko und R. Carrié, J. Chem. Soc., Chem. Commun., (1984) 1640.
- 20 G.M. Bodner, Inorg. Chem., 14 (1975) 2694; M.F. Guns, E.G. Claeys und G.P. van der Kelen, J. Mol. Struct., 52 (1979) 45.
- 21 B. Wrackmeyer, K. Schamel und M. Herberhold, Z. Naturforsch. B, 44 (1989) 55.
- 22 G.M. Bodner, M.P. May und L.E. McKinney, Inorg. Chem., 19 (1980) 1951; L. Verdonck, E. Vincent und G.P. Van der Kelen, J. Mol. Struct., 117 (1984) 257.
- 23 H.J. Platas, J.M. Stewart und S.O. Grim, Inorg. Chem., 12 (1973) 265.
- 24 W.P. Meier, J. Strähle und E. Lindner, Z. Anorg. Allg. Chem., 427 (1976) 154; J. Organomet. Chem., 114 (1976) 67.
- 25 T.C. Klebach, R. Lourens, F. Bickelhaupt, C.H. Stam und A. van Herk, J. Organomet. Chem., 210 (1981) 211.
- 26 G. Huttner, G. Mohr, P. Friedrich und H.G. Schmid, J. Organomet. Chem., 160 (1978) 59; J. von Seyerl, D. Neugebauer und G. Huttner, Chem. Ber., 112 (1979) 3637.
- 27 A. Whitacker und J.W. Jeffery, Acta Cryst., 23 (1967) 977.
- 28 O. Mundt, H. Riffel, G. Becker und A. Simon, Z. Naturforsch. B, 43 (1988) 952.
- 29 R. Richter, J. Kaiser, J. Sieler, H. Hartung und C. Peter, Acta Cryst., B, 33 (1977) 1887.
- 30 G.J. Palenik und J. Donahue, Acta Cryst., 15 (1962) 564.
- 31 C.J. Spencer und W.N. Lipscomb, Acta Cryst., 14 (1961) 250.
- 32 I.G. Phillips, R.G. Ball und R.G. Cavell, Inorg. Chem., 26 (1987) 4074.
- 33 A.H. Cowley, Polyhedron, 3 (1984) 389.
- 34 S.O. Grim, D.A. Wheatland und W. McFarlane, J. Am. Chem. Soc., 89 (1967) 5573; H.J. Plastas, J.M. Stewart und S.O. Grim, ibid., 91 (1969) 4326.
- 35 F.A. Cotton und D.C. Richardson, Inorg. Chem., 5 (1966) 1851.
- 36 L. Pauling, Die Natur der chemischen Bindung, Verlag Chemie, Weinheim, 1976.
- 37 F.W. Bennett, H.J. Emeléus und R.N. Haszeldine, J. Chem. Soc., (1953) 1565; W. Volbach, und I. Ruppert, Tetrahedron Lett., 24 (1983) 5509.